
An Unsupervised Learning Based
Encrypted Mobile Traffic Cleaning Framework

Kun Qiu, Ying Wang, Baoqian Li
Intel Asia-Pacific Research & Development Ltd, Shanghai, China

{kun.qiu, ying.a.wang, baoqian.li}@intel.com

Abstract—Traffic classification, a technique that aims at clas-
sifying network traffic into different classes, has been widely
deployed in the enterprise and carrier network. With the massive
adoption of mobile devices, the encrypted protocol is applied
in mobile applications to prevent the raising of privacy issues.
However, traditional traffic classification methods such as Deep
Packet Inspection (DPI) cannot distinguish encrypted traffic.
To overcome this problem, Artificial Intelligence (AI), especially
Machine Learning (ML) has emerged as a satisfactory solution
for encrypted traffic classification. Traffic data cleaning is the
most important step, which removes traffic that does not need
to be trained (useless protocol, background, control plane traffic
such as long live traffic, etc.). However, the existing solution that
is manually checking every packet collected, is too expensive in
cleaning encrypted traffic. In this paper, we design a novel frame-
work that can automatically clean the encrypted traffic data. The
evaluation results show the effectiveness of our framework with
only 2% ∼ 2.5% accuracy loss comparing to the manual solution.
Moreover, we also optimize the implementation that can achieve
10-times speedups over the non-optimized implementation.

Index Terms—Traffic Cleaning, Unsupervised Learning

I. INTRODUCTION

Traffic classification, a technique that aims at classifying
network traffic into different classes, such as normal or ab-
normal traffic, or the name of the application (e.g., YouTube,
Skype or Netflix), has been widely deployed in the enterprise
and carrier network [1], [2]. Usually, traffic can be classified
by (1) IANA defined Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) port numbers, or (2) utilizing
Deep Packet Inspection (DPI) tools within TCP or UDP
payload for seeking specific protocol/application signatures.
However, with the massive adoption of mobile devices in
recent years, encrypted protocol (e.g., TLS) has been widely
utilized in mobile applications to prevent the raising of privacy
issues [3]. Thus, the traditional traffic classification approach
is inaccurate if applications use encrypted traffic.

To overcome these issues, Artificial Intelligence (AI), espe-
cially Machine Learning (ML) has emerged as a satisfactory
solution for encrypted traffic classification. The general steps
to train an ML model in traffic classification are (1) traffic data
collection; (2) traffic data cleaning; (3) classification model
training [4]. The quality of a trained classification model de-
pends on the cleanliness of the data collected. Briefly speaking,
the traffic data cleaning process should remove traffic that does
not need to be trained, such as useless protocol traffic (e.g.,
TCP traffic with only handshake packet), background service

traffic (e.g., Android/iOS service) or even control plane traffic
of an application (e.g., keep alive traffic).

One of the factors that affect the complexity of traffic
cleaning is the traffic collection method. Appropriate traffic
collection methods must introduce as little unnecessary traffic
as possible. However, obtaining traffic from mobile applica-
tions is much more challenging than obtaining traffic from
traditional PC applications (e.g., YouTube via a web browser,
Skype or the famous game World of Warcraft). One reason
is that collecting PC traffic can directly utilize traffic/packet
sniffing tools like Wireshark or Fiddler on the application
process [5], but collecting mobile traffic can only obtain
traffic from the mobile device by using a modified router or
edge device. Comparing to Wireshark or Fiddler, there are
numerous traffic that should not be trained (e.g., background
Android/iOS service traffic) are collected via router or edge
device. Thus, cleaning the traffic data of mobile applications
has been a serious problem.

Unfortunately, most of the existing cleaning works focus on
unencrypted traffic classification [6]. None of them mentioned
how to clean encrypted traffic after traffic collection from
the mobile device. A naiv̈e solution is to manually check
every packet offline. However, it may cost several days to
prepare cleaned traffic for classification model training, which
is difficult to be deployed in enterprise and carrier network.

In this paper, we design a novel framework to clean the
encrypted mobile traffic data. We propose an online structure
that utilizes an unsupervised learning based algorithm to
extract clean data from the collected traffic data. We also apply
the high-performance instruction such as vector optimization
to fully increasing its computing efficiency. The evaluation
results show the effectiveness of our framework with only
2% ∼ 2.5% accuracy loss comparing to the manual cleaning
solution. Moreover, our optimized implementation can achieve
10-times speedups over the non-optimized implementation.

The remainder of the paper is organized as follows. Sec-
tion II gives the background and related work, Section III
gives an overview of our design, Section IV shows the detailed
design. Our evaluation results are showed in Section V, and
we conclude this paper in Section VI.

II. BACKGROUND AND RELATED WORK

As we have mentioned before, most of the ML-based traffic
classification methods need to follow the generic steps: 1) traf-



Server

Clean

NIC

Probe
Netflix

Android

TikTok

Android

Youtube

Android

Netflix

iOS

TikTok

iOS

Youtube

iOS

... ... ...

Uncleaned 

training traffic

(with Tag)

Normal Traffic

Normal Traffic

(without Tag)

Traffic 

Flow

DPI

(Remove 

Unencrypted 

Traffic)

Feature Extraction

(Extract the 

Statistical Feature of 

Traffic)

Clustering

(Removing 

Encrypted 

Traffic)

Normal Traffic

(without Tag)

Uncleaned 

training traffic

(with Tag)

Cleaned

training 

traffic

Trained

model

Fig. 1. The overview of our design. The mobile traffic farm is utilized to generate traffic for every application which is needed for training. We deploy the
application in the real smartphone or simulator in the traffic farm. We deploy our clean module as a clean Virtual Network Function (VNF) in a server or even
in an Edge Box. A tag, such as MAC address or VLAN ID can be used to distinguish different application traffic. Traffic without a tag will not be directed
into the clean and train module. The detailed process of the clean module is on the left side of the figure. We can see that there are 3 steps to remove the
unnecessary traffic: 1) remove unencrypted traffic; 2) extract traffic features and 3) remove encrypted traffic.

fic data collection; 2) traffic data cleaning and 3) classification
model training:

1) Traffic data collection: This step aims at obtaining
the raw packets and extracting traffic data from raw
packets. Raw data can be imported from an offline packet
trace [7]–[9], or captured from online packet sniffing
software or devices [10], [11]. In order to extract traffic
from raw packets, feature extraction (FE), which is one
of the most important processes, is proposed to extract
statistical features of every traffic [2], [12], [13]. Statisti-
cal features can better describe traffic then raw packets.
Nearly all existing works perform feature extraction to get
statistical features before they train classification model.
Most works using Joy [14], an Open Source feature
extraction library, to extract statistical features for further
training.

2) Traffic data cleaning: Several works perform traffic data
cleaning in their pre-processing tasks [1], [6]. An Android
malware detection framework [4] performs traffic data
cleaning to smooth the noisy traffic and resolve incon-
sistencies in the data. A more detailed work [15] shows
that traffic cleaning should detect errors, fix functional
dependency and missing/incomplete data. However, none
of them mentioned how to perform encrypted traffic
cleaning.

3) Classification model training: The classification model
mainly falls into two classes: supervised and unsuper-
vised model. Naiv̈e Bayes [16], Support Vector Machine
(SVM) [17] and Decision Tree [5] have been widely
used as traffic classification. Comparing to the supervised
model, the unsupervised method does not need label be-
fore training. K-means [18] is usually utilized to separate

traffic into different QoS classes (e.g., VoIP, browsing,
gaming, etc.).

III. OVERVIEW

In this section, we will give an overview of our design.
Fig. 1 shows the structure of our framework. It is mainly
composed by a mobile traffic farm and a server. We will
describe them in detail.

A. Mobile traffic farm

We use a mobile traffic farm to generate traffic for every
application which is needed for training. Traffic is generated
by the mobile application that is deployed in real smartphone
and simulator (e.g., Bluestack [19]). Since it is reported
that a same application on different mobile platform (e.g,
iOS/Android) may lead to significant differences of traffic
features [3], we deploy the same application with Android/iOS
separately. We use a tag, such as MAC address or VLAN ID
to distinguish different application traffic. However, the tagged
traffic contains not only the application traffic, but also the
background and control plane traffic generated by mobile OS,
we call it uncleaned training traffic. The uncleaned training
traffic will be directly sent to the server side for cleaning and
training.

B. Server

In order to deploy our framework into existing network,
we can pack our clean module as a clean Virtual Network
Function (VNF) in a server or even in an Edge Box such
as Intel uCPE. When the uncleaned training traffic arrived
at NIC, the probe module will direct tagged traffic into our
clean module. After the traffic is cleaned, the cleaned training



traffic will be redirected into the training service to train a
classification model, then the model will be deployed into the
classifier.

IV. DESIGN OF CLEAN MODULE

In this section, we describe the clean module in detail. The
left side of Fig. 1 shows there are 3 steps to clean the traffic.
First, statistical features are extracted from the packet flow
by feature extraction (FE). Next, unnecessary traffic such as
DNS query or Android/iOS service can be removed by the DPI
tool. At last, encrypted traffic can be cleaned by unsupervised
learning. We use the clustering algorithm to cluster traffic into
several traffic clusters, and remove traffic in clusters whose
traffic features do not fit our requirement (e.g., heartbeat
traffic/upload traffic/etc.). Finally, we can get cleaned traffic
after these steps.

A. Removing unencrypted traffic and extracting statistical
features

As we have mentioned before, FE is the most important step
since traffic features are required by the following clustering
and classifying algorithm. We can extract statistical features
(e.g., Bytes In/Out, Header/Payload mean size and the duration
of traffic) that reflect traffic properties by utilizing the feature
extracting library. The result of the FE is a structured table,
while each column indicates a feature and each row is a feature
observation of traffic.

At the same time, we use the DPI tool to quickly detect
unencrypted traffic that we do not need such as Google/Apple
service or Cloudflare for training. At last, we get the pre-
cleaned traffic flow with the statistical feature by combining
the result from the last two steps.

B. Utilizing the clustering algorithm to remove encrypted
traffic

After the pre-cleaned traffic is obtained, we can clean
encrypted traffic by unsupervised learning algorithms. Most
of the unsupervised learning algorithms utilize the clustering
algorithm. The clustering algorithm is to group a set of objects
into several sets or called clusters. Objects in the same cluster
are more similar to each other than objects in other clusters.
We use a clustering algorithm to cluster pre-cleaned traffic into
several clusters. Both research works [5] and our evaluation
results show that 3 ∼ 4 clusters are good enough to clean
useless traffic. The following traffic features are used to cluster
traffic: BytesIn, BytesOut, PacketsIn, PacketsOut, Duration,
Ratio. BytesIn and BytesOut indicate the sum of bytes the
traffic received and sent. PacketsIn and PacketsOut indicate
the count of packets the traffic received and sent. Duration
indicates the time of traffic sustains. Ratio is a value ranging
from −1 to 1 and is computed by BytesIn−BytesOut

BytesIn+BytesOut . If the
ratio is closer to 1, it indicates the traffic is similar to download
traffic and vice versa. A clustering example is given in Fig. 2
where only two features BytesIn, BytesOut are considered. The
clustering algorithms used here are k-means and hierarchical
clustering. The former has better performance while the latter
has higher accuracy.

D

C

B

A

Sent Bytes

R
e

c
e
iv

e
d

 B
y
te

s

Fig. 2. An example of utilizing the clustering algorithm in cleaning encrypted
traffic. In this figure, we only use two features: Sent Bytes and Received Bytes
as an example. After the clustering algorithm is performed, we have 4 clusters
(A, B, C, D). Traffic in cluster D is significantly different from traffic in
cluster A. Most traffic in cluster D is upload traffic, while traffic in cluster A
is download traffic.

C. Using cleaned traffic to train classification model

After the clustering, we can get several traffic clusters. We
can choose the clustered class we need as training data to train
the classifier for classification. As an example shown in Fig. 3,
if we want to choose the data plane traffic of a video-stream
application such as Netflix or YouTube, we can find the cluster
whose traffic ratio is closer to 1 (larger than 0.9 in most time),
and remove other traffic. Another example is extracting some
control plane traffic, such as long-live heart-beat traffic. We
can remove the traffic in the cluster whose traffic duration is
not significantly longer than 1s with a minimum BytesOut.

V. EVALUATION

A. Environment

Before we propose the evaluation results, we firstly give
the detail of our evaluation environment. Our server uses
a Xeon Gold 6148 @ 2.40Ghz with 196GB DDR4 RAM.
The operating system is Linux 3.10.0, with Python 3.6 and
GCC 8.4.0. We first implement our framework on scikit-
learn [20], which is an ML library based on Python. We use
nDPI [21] as a DPI tool. As mentioned above, we convert our
implementation to C++ with the help of Intel Data Analytics
Acceleration Library(DAAL) [22], a high-performance ML
library with vector optimization (e.g., AVX512), to further
increase the performance of our framework.

B. Dataset

We give the detailed information of our dataset in TABLE I.
The traffic data is collected by the mobile traffic farm. We
deploy the iOS version in several iPhone 6 smartphones



Pre-Cleaned Traffic Flow

TikTok

Pre-Cleaned Traffic Flow 

NetFlix

Pre-Cleaned Traffic Flow 

Application i...

Clustering

TikTok

NetFlix

Application i

...

A
B

C ...

A

C

B
...

A
C

B
...

Classifier

(e.g., Decision Tree)

 ...

Fig. 3. Utilizing the clustering algorithm to separate unnecessary traffic without any trained data from all traffic flows. The uppercase letters (‘A’, ‘B’, ‘C’
) indicate clustered classes after the clustering algorithm is performed. We can choose one of the clustered classes as training data to train the classifier for
traffic classification.

and deploy the Android version in a server with several
Bluestack [19] Android simulators. The dataset of each ap-
plication contains mixture iOS/Android traffics. Since all of
these applications are video applications, we set a playlist in
these applications so they can generate traffic automatically.
The duration of all traffic is 2 hours.

TABLE I
DATASET

Dataset Size Number of Flows Date Duration

Youku 1.94GB 16017 2019-12-6 2 hours

Weishi 1.83GB 12097 2019-11-25 2 hours

Kuaishou 1.52GB 10148 2019-11-24 2 hours

Tiktok 1.47GB 9718 2019-11-25 2 hours

Bilibili 2.02GB 14132 2019-12-6 2 hours

C. Accuracy

In order to obtain the accuracy/precision/recall of our clean-
ing framework, we choose the 75% traffic for training and 25%
traffic for testing. After performing the clustering algorithm,
we use the data plane traffic to train a classifier by choosing
the cluster whose traffic ratio is closer to 1. We also manually
clean the traffic by checking every packet offline. We use all 5
application traffic to train a multi-class random forest classifier
based on scikit-learn.

From Fig. 4 we can see that utilizing the clustering al-
gorithm only brings 2% ∼ 2.5% accuracy loss then the
manual traffic cleaning approach. Moreover, the hierarchical
clustering algorithm has slightly higher accuracy than the k-
means algorithm.

Fig. 4. The accuracy/precision/recall comparison between manually cleaning
and our cleaning framework. We do not show the uncleaned result since the
accuracy of uncleaned traffic is less than 50%. We use both k-means and
hierarchical clustering algorithms to evaluate traffic cleaning. The result shows
that our cleaning framework only has 2% ∼ 3% accuracy loss than the
manually traffic cleaning

D. Performance

As we have claimed that manually checking every packet
is expensive, which may consume over hours or days, we
evaluate the time consuming of our traffic cleaning framework
to show the computing performance.

Fig. 5 shows that the time consuming of our framework is
less than 33s with DPI, 12s without DPI, which is significantly
less than manually traffic cleaning. Moreover, the hierarchical
cluster algorithm uses more time than the k-means algorithm.

As mentioned above, we also utilize high-performance
vector optimization to further increase the performance of
the traffic cleaning framework. We use other traffic data
sets generated by Youku with different numbers of traffic to
evaluate the performance of our optimized implementation. We
use k-means as our clustering algorithm in this evaluation.

From Fig. 6 we can see that with the C++ and vector
optimized implementation, the traffic cleaning efficiency has



Fig. 5. The performance comparison between different clustering algorithm.
We do not show the time of manually traffic cleaning since it costs more than
several hours. The result shows that the hierarchical clustering algorithm uses
more time than the k-means algorithm.

Fig. 6. The performance comparison between python/scikit-learn and
C++/DAAL. With the increasing number of flows, the time of our optimized
traffic cleaning framework does not raise much. The time cost of non-
optimized solution on cleaning 25144 traffic is about 10 times than our
optimized solution.

a significant increase.

E. Analysis

First of all, the evaluation results show that our traffic
cleaning framework can effectively clean the traffic without
manual intervention. The DPI seems to be less effective since
most of unencrypted traffic is not data plane traffic. However,
if we choose control plane traffic to train a classifier, the DPI is
indispensable in cleaning unencrypted traffic. Also, there is a
tradeoff in choosing the clustering algorithm. The hierarchical
clustering has a better accuracy but the k-means has a better
computing performance. But most of the time, the cleaning
accuracy of k-means is enough for traffic classification.

VI. CONCLUSION

In this paper, we have proposed a traffic cleaning framework
to address the encrypted mobile traffic cleaning problem. We
have designed an online structure that utilizes the unsupervised
learning algorithm to automatically clean encrypted traffic

data. Briefly speaking, we propose a framework that utilizes
an unsupervised learning based algorithm to extract clean
data from the collected traffic data. Moreover, we apply
high-performance instruction such as vector optimization to
fully increasing computing efficiency. Our evaluation results
demonstrate the effectiveness of our framework with only
2% ∼ 2.5% accuracy loss comparing to manual traffic clean-
ing. Moreover, our optimized implementation can achieve 10-
times speedups over the non-optimized implementation.

REFERENCES

[1] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “To-
wards the deployment of machine learning solutions in network traffic
classification: a systematic survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1988–2014, 2018.

[2] A. K. Marnerides, A. Schaeffer-Filho, and A. Mauthe, “Traffic anomaly
diagnosis in internet backbone networks: A survey,” Computer Networks,
vol. 73, pp. 224–243, 2014.

[3] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445–458, 2019.

[4] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah, “Android
malware detection based on network traffic using decision tree algo-
rithm,” in International Conference on Soft Computing and Data Mining.
Springer, 2018, pp. 485–494.

[5] T. Bakhshi and B. Ghita, “On internet traffic classification: A two-
phased machine learning approach,” Journal of Computer Networks and
Communications, vol. 2016, 2016.

[6] R.-y. WANG, L. Zhen, and L. ZHANG, “Method of data cleaning for
network traffic classification,” The Journal of China Universities of Posts
and Telecommunications, vol. 21, no. 3, pp. 35–45, 2014.

[7] (2020) Caida. [Online]. Available: http://www.caida.org/data/
[8] (2020) Kdd cup 1999 data. [Online]. Available: http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html
[9] (2020) Darpa intrusion detection data sets. [Online]. Available:

https://ll.mit.edu/ideval/data
[10] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer,

“Applying machine learning techniques for detection of malicious code
in network traffic,” in Annual Conference on Artificial Intelligence.
Springer, 2007, pp. 44–50.

[11] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Thing, “Slic: Self-learning
intelligent classifier for network traffic,” Computer networks, vol. 91, pp.
283–297, 2015.

[12] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based
network intrusion detection: A review,” computers & security, vol. 30,
no. 6-7, pp. 353–375, 2011.

[13] J. J. Davis and E. Foo, “Automated feature engineering for http tunnel
detection,” Computers & Security, vol. 59, pp. 166–185, 2016.

[14] (2020) Cisco joy. [Online]. Available: https://github.com/cisco/joy
[15] C. Zhong, H. Liu, and A. Alnusair, “Leveraging decision making in

cyber security analysis through data cleaning,” Southwestern Business
Administration Journal, vol. 16, no. 1, p. 1, 2017.

[16] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, 2005, pp. 50–60.

[17] R. Yuan, Z. Li, X. Guan, and L. Xu, “An svm-based machine learning
method for accurate internet traffic classification,” Information Systems
Frontiers, vol. 12, no. 2, pp. 149–156, 2010.

[18] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” ACM SIGCOMM Computer Commu-
nication Review, vol. 36, no. 2, pp. 23–26, 2006.

[19] (2020) Bluestack, an android simulator. [Online]. Available: https:
//www.bluestacks.com/

[20] (2020) Scikit-learn, ml in python. [Online]. Available: https://
scikit-learn.org/stable/

[21] (2020) ndpi, the open source dpi tool. [Online]. Available: https://https:
//github.com/ntop/nDPI

[22] (2020) Intel data analytics acceleration library. [Online]. Available:
https://software.intel.com/dpd/daal-library


